

 Navigation

 	
 index

 	
 next |

 	ACME 0.1.1 documentation

ACME.jl - Analog Circuit Modeling and Emulation for Julia

ACME is a Julia [http://julialang.org/] package for the simulation of electrical circuits, focusing on
audio effect circuits. It allows to programmatically describe a circuit in terms
of elements and connections between them and then automatically derive a model
for the circuit. The model can then be run on varying input data.

ACME is based on the method described in M. Holters, U. Zölzer, “A Generalized
Method for the Derivation of Non-Linear State-Space Models from Circuit
Schematics” [http://www.eurasip.org/Proceedings/Eusipco/Eusipco2015/papers/1570103545.pdf].

Contents:

	Getting Started
	Installation

	First Steps

	User Guide
	Element Creation

	Circuit Description

	Model Creation and Use

	Solvers

	Element Reference
	Passives

	Independent Sources

	Probes

	Semiconductors

	Integrated Circuits

 Copyright 2015, 2016 Martin Holters.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ACME 0.1.1 documentation

Getting Started

Installation

If you have not done so already, download and install Julia [http://julialang.org/downloads/]. (Any version starting with 0.3 should be fine.)

To install ACME, start Julia and run:

Pkg.add("ACME")

This will download ACME and all of its dependencies.

First Steps

We will demonstrate ACME by modeling a simple diode clipper. The first step is
to load ACME:

using ACME

Now we create all the necessary circuit elements:

j_in = voltagesource()
r1 = resistor(1e3)
c1 = capacitor(47e-9)
d1 = diode(is=1e-15)
d2 = diode(is=1.8e-15)
j_out = voltageprobe()

Specifying a voltagesource() sets up a voltage source as an input, i.e. the
voltage it sources will be specified when running the model. Alternatively, one
can instantiate a constant voltage source for say 9V with voltagesource(9).
The resistor and capacitor calls take the resistance in ohm and the
capacitance in farad, respectively, as arguments. For the diode, one may
specify the saturation current is as done here and/or the emission
coefficient η. Finally, desired outputs are denoted by adding probes to the
circuit; in this case a voltageprobe() will provide voltage as output.

Next we need a Circuit instance to keep track of how the elements connect to
each other:

circ = Circuit()

Connections can be specified by naming element pins that are connected:

connect!(circ, j_in["+"], r1[1])

This connects the positive output of the input voltage source with pin 1 of the
resistor. Alternatively, one can introduce named nets to which element pins
connect. This may increase readability for nets with many connected elements,
like supply voltages. Here, we use it for the ground net where we connect the
negative side of the input voltage:

connect!(circ, j_in["-"], :gnd)

One can also connect multiple pins at once:

connect!(circ, r1[2], c1[1], d1["+"], d2["-"], j_out["+"])
connect!(circ, :gnd, c1[2], d1["-"], d2["+"], j_out["-"])

Now that all connections have been set up, we need to turn the circuit
description into a model. This could hardly be any easier:

model = DiscreteModel(circ, 1./44100)

The second argument specifies the sampling interval, the reciprocal of the
sampling rate, here assumed to be the typical 44100 Hz.

Now we can process some input data. It has to be provided as a matrix with one
row per input (just one in the example) and one column per sample. So for a
sinusoid at 1 kHz lasting one second, we do:

y = run!(model, sin(2π*1000/44100*(0:44099).'))

The output y now likewise is a matrix with one row for the one probe we have
added to the circuit and one column per sample.

More interesting circuits can be found in the examples located at
Pkg.dir("ACME/examples").

In the likely event that you would like to process real audio data, take a look
at the WAV [https://github.com/dancasimiro/WAV.jl] package for reading writing WAV files.

Note that the solver used to solve the non-linear equation when running the
model saves solutions to use as starting points in the future. Model execution
will therefore become faster after an initial learning phase. Nevertheless,
ACME is at present more geared towards computing all the model matrices than to
actually running the model. More complex circuits may run intolerably slow or
fail to run altogether.

 Copyright 2015, 2016 Martin Holters.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ACME 0.1.1 documentation

User Guide

Element Creation

All circuit elements are created by calling corresponding functions; see the
Element Reference for details.

Circuit Description

Circuits are described using Circuit instances, created with Circuit().
Once a Circuit and elements have been created, the elements can be added to
the circuit using the add! method:

r = resistor(1e3)
c = capacitor(22e-9)
circ = Circuit()
add!(circ, r)
add!(circ, c)

Multiple elements can be added also be at once; the last two lines could have
been replaced with add!(circ, r, c).

In many cases, however, explicitly calling add! is not necessary. All that
is needed is connect!, which connects two (or more) element pins. The
elements to which these pins belong are automatically added to the circuit if
needed. The only reason to explicitly call add! is to control the insertion
order of sources or sinks, which determines the order in which inputs have to be
provided and outputs are obtained.

Pins are obtained from elements using []-style indexing, i.e. r[1] gives
the first pin of the resistor defined above. So this connects the first pin of
the resistor with the first pin of the capacitor:

connect!(circ, r[1], c[1])

Further connections involving the same pins are possible and will not replace
existing ones. So this will effectively shorten the resistor, because now both
of its pins are connected to c[1]:

connect!(circ, r[2], c[1])

Note that not all elements have numbered pins. For elements with polarity, they
may be called + and -, while a bipolar transistor has pins base,
collector, and emitter. The pins provided by each type of element are
described in the Element Reference. Internally, the pin designators are
Symbols. However, not all symbols are conveniently entered in Julia:
:base is nice, symbol("1") less so. Therefore, the [] operation on
elements also accepts integers and strings and converts them to the respective
Symbols. So r[symbol("1")] is equivalent to r[1] and (assuming
d to be a diode) d[:+] is equivalent to d["+"] (but d[+] does
not work).

In addition to pins, connect! also accepts Symbols as input. This
creates named nets which may improve readability for nets with many conneted
pins:

connect!(c[2], :gnd)
connect!(r[2], :gnd)

Again, this only adds connections, keeping existing ones, so together with the
above snippets, now all pins are connected to each other and to net named
gnd. It is even possible to connect multple named nets to each other, though
this will only rarely be useful.

Model Creation and Use

A Circuit only stores elements and information about their connections. To
simulate a circuit, a model has to be derived from it. This can be as simple
as:

model = DiscreteModel(circ, 1/44100)

Here, 1/44100 denotes the sampling interval, i.e. the reciprocal of the
sampling rate at which the model should run. Optionally, one can specify the
solver to use for solving the model’s non-linear equation as a type parameter:

model = DiscreteModel{HomotopySolver{SimpleSolver}}(circ, 1/44100)

See Solvers for more information about the available solvers.

Once a model is created, it can be run:

y = run!(model, u)

The input u is matrix with one row for each of the circuit’s inputs and one
column for each time step to simulate. Likewise, the output y will be a
matrix with one row for each of the circuit’s outputs and one column for each
simulated time step. The order of the rows will correspond to the order in which
the respective input and output elements were added to the Circuit. To
simulate a circuit without inputs, a matrix with zero rows may be passed:

y = run!(model, zeros(0, 100))

The internal state of the model (e.g. capacitor charges) is preserved accross
calls to run!. Initially, all states are zeroed. It is also possible to set
the states to a steady state (if one can be found) with:

steadystate!(model)

This is often desirable for circuits were bias voltages are only slowly obtained
after turning them on.

Solvers

SimpleSolver

The SimpleSolver is the simplest available solver. It uses Newton iteration
which features fast local convergence, but makes no guarantees about global
convergence. The initial solution of the iteration is obtained by extrapolating
the last solution found (or another solution provided externally) using the
available Jacobians. Due to the missing global convergence, the SimpleSolver
is rarely useful as such.

HomotopySolver

The HomotopySolver extends an existing solver (provided as a type parameter)
by applying homotopy to (at least theoretically) ensure global convergence. It
can be combined with the SimpleSolver as HomotopySolver{SimpleSolver} to
obtain a useful Newton homtopy solver with generally good convergence
properties.

CachingSolver

The CachingSolver extends an existing solver (provided as a type parameter)
by storing found solutions in a k-d tree to use as initial solutions in the
future. Whenever the underlying solver needs more than a preset number of
iterations (defaults to five), the solution will be stored. Storing new
solutions is a relatively expensive operation, so until the stored solutions
suffice to ensure convergence in few iterations throughout, use of a
CachingSolver may actually slow things down.

The default solver used is a HomotopySolver{CachingSolver{SimpleSolver}}.

 Copyright 2015, 2016 Martin Holters.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	ACME 0.1.1 documentation

Element Reference

Passives

	
resistor(r)

	Creates a resistor obeying Ohm’s law.

	Parameters:	r – Resistance in Ohm

Pins: 1, 2

	
capacitor(c)

	Creates a capacitor.

	Parameters:	c – Capacitance in Farad

Pins: 1, 2

	
inductor(l)

	Creates an inductor.

	Parameters:	l – Inductance in Henri

Pins: 1, 2

	
inductor(Val{:JA}; D, A, n, a, α, c, k, Ms)

	Creates a non-linear inductor based on the Jiles-Atherton model of
magnetization assuming a toroidal core thin compared to its diameter.

	Parameters:	
	D – Torus diameter (in meters)

	A – Torus cross-sectional area (in square-meters)

	n – Winding’s number of turns

	a – Shape parameter of the anhysteretic magnetization curve (in
Ampere-per-meter)

	α – Inter-domain coupling

	c – Ratio of the initial normal to the initial anhysteretic
differential susceptibility

	k – amount of hysteresis (in Ampere-per-meter)

	Ms – saturation magnetization (in Ampere-per-meter)

A detailed discussion of the paramters can be found in D. C. Jiles and D. L.
Atherton, “Theory of ferromagnetic hysteresis,” J. Magn. Magn. Mater., vol.
61, no. 1–2, pp. 48–60, Sep. 1986 and J. H. B. Deane, “Modeling the dynamics
of nonlinear inductor circuits,” IEEE Trans. Magn., vol. 30, no. 5, pp.
2795–2801, 1994, where the definition of c is taken from the latter.

Pins: 1, 2

	
transformer(l1, l2; [coupling_coefficient=1,] [mutual_coupling=coupling_coefficient*sqrt(l1*l2)])

	Creates a transformer with two windings having inductances.

	Parameters:	
	l1 – Primary self-inductance in Henri

	l2 – Secondary self-inductance in Henri

	coupling_coefficient – Coupling coefficient (0 is not coupled, 1 is
closely coupled)

	mutual_coupling – Mutual inductance in Henri; overrides
coupling_coefficient if both are given

Pins: 1 and 2 for primary winding, 3 and 4 for secondary
winding

	
transformer(Val{:JA}; D, A, ns, a, α, c, k, Ms)

	Creates a non-linear transformer based on the Jiles-Atherton model of
magnetization assuming a toroidal core thin compared to its diameter.

	Parameters:	
	D – Torus diameter (in meters)

	A – Torus cross-sectional area (in square-meters)

	ns – Windings’ number of turns as a vector with one entry per winding

	a – Shape parameter of the anhysteretic magnetization curve (in
Ampere-per-meter)

	α – Inter-domain coupling

	c – Ratio of the initial normal to the initial anhysteretic
differential susceptibility

	k – amount of hysteresis (in Ampere-per-meter)

	Ms – saturation magnetization (in Ampere-per-meter)

A detailed discussion of the parameters can be found in D. C. Jiles and D. L.
Atherton, “Theory of ferromagnetic hysteresis,” J. Magn. Magn. Mater., vol.
61, no. 1–2, pp. 48–60, Sep. 1986 and J. H. B. Deane, “Modeling the dynamics
of nonlinear inductor circuits,” IEEE Trans. Magn., vol. 30, no. 5, pp.
2795–2801, 1994, where the definition of c is taken from the latter.

Pins: 1 and 2 for primary winding, 3 and 4 for secondary
winding, and so on

Independent Sources

	
voltagesource([v])

	Creates a voltage source.

	Parameters:	v – Source voltage in Volt. If omitted, the source voltage will be an
input of the circuit.

Pins: + and - with v being measured from + to -

	
currentsource([i])

	Creates a current source.

	Parameters:	i – Source current in Ampere. If omitted, the source current will be an
input of the circuit.

Pins: + and - where i measures the current leaving source at the
+ pin

Probes

	
voltageprobe()

	Creates a voltage probe, provding the measured voltage as a circuit output.

Pins: + and - with the output voltage being measured from + to
-

	
currentprobe()

	Creates a current probe, provding the measured current as a circuit output.

Pins: + and - with the output current being the current entering the
probe at +

Semiconductors

	
diode(;[is=1e-12,] [η = 1])

	Creates a diode obeying Shockley’s law
[image: i=I_S\cdot(e^{v/(\eta v_T)}-1)] where [image: v_T] is fixed at 25 mV.

	Parameters:	
	is – Reverse saturation current in Ampere

	η – Emission coefficient

	
bjt(typ; is=1e-12, η=1, isc=is, ise=is, ηc=η, ηe=η, βf=1000, βr=10)

	Creates a bipolar junction transistor obeying the Ebers-Moll equation

[image: i_E &= I_{S,E} \cdot (e^{v_E/(\eta_E v_T)}-1) - \frac{\beta_r}{1+\beta_r} I_{S,C} \cdot (e^{v_C/(\eta_C v_T)}-1) \\ i_C &= -\frac{\beta_f}{1+\beta_f} I_{S,E} \cdot (e^{v_E/(\eta_E v_T)}-1) + I_{S,C} \cdot (e^{v_C/(\eta_C v_T)}-1)]

where [image: v_T] is fixed at 25 mV.

	Parameters:	
	typ – Either :npn or :pnp, depending on desired transistor type

	is – Reverse saturation current in Ampere

	η – Emission coefficient

	isc – Collector reverse saturation current in Ampere (overriding is)

	ise – Emitter reverse saturation current in Ampere (overriding is)

	ηc – Collector emission coefficient (overriding η)

	ηe – Emitter emission coefficient (overriding η)

	βf – Forward current gain

	βr – Reverse current gain

Integrated Circuits

	
opamp()

	Creates an ideal operational amplifier. It enforces the voltage between the
input pins to be zero without sourcing any current while sourcing arbitrary
current on the output pins wihtout restricting their voltage.

Note that the opamp has two output pins, one of which will typically be
connected to a ground node and has to provide the current sourced on the
other output pin.

Pins: in+ and in- for input, out+ and out- for output

	
opamp(Val{:macak}, gain, vomin, vomax)

	Creates a clipping operational amplifier where input and output voltage are
related by

[image: v_\text{out} = \frac{1}{2}\cdot(v_\text{max}+v_\text{min}) +\frac{1}{2}\cdot(v_\text{max}-v_\text{min})\cdot \tanh\left(\frac{g}{\frac{1}{2}\cdot(v_\text{max}-v_\text{min})}\cdot v_\text{in}\right).]

The input current is zero, the output current is arbitrary.

Note that the opamp has two output pins, one of which will typically be
connected to a ground node and has to provide the current sourced on the
other output pin.

Pins: in+ and in- for input, out+ and out- for output

 Copyright 2015, 2016 Martin Holters.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ACME 0.1.1 documentation

Index

 B
 | C
 | D
 | I
 | O
 | R
 | T
 | V

B

 	

 	bjt() (built-in function)

C

 	

 	capacitor() (built-in function)

 	currentprobe() (built-in function)

 	

 	currentsource() (built-in function)

D

 	

 	diode() (built-in function)

I

 	

 	inductor() (built-in function), [1]

O

 	

 	opamp() (built-in function), [1]

R

 	

 	resistor() (built-in function)

T

 	

 	transformer() (built-in function), [1]

V

 	

 	voltageprobe() (built-in function)

 	

 	voltagesource() (built-in function)

 Copyright 2015, 2016 Martin Holters.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_images/math/576d4929ebf1fbb6d919095c4e9d38a115c5d23a.png
o

_images/math/fd8337386725421e376259ebfccd9d8fa54e9c26.png
Pr
1+ 5

Tgp - (/02 1) 4 Igq - (eteleer) _ 1)

ip = Ig - (ev/=vr) 1) — Igc- (ere/er) 1)

_images/math/5b91a993182db9b8c9938f37e24bb6dff9a1abbb.png
Ig - (ev/lmer) — 1)

_images/math/cbbefd5326de6e957c3a65db159ae3ac0fbca39e.png
(Vmax + vmin) + 5 - (Vmax — Vmin) - ta
(s tanh
)
2 (z (;

e

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		ACME 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, 2016 Martin Holters.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

